1.	Overview

This proposal is to provide a standard means of storing large amounts of data in DCC decoders without requiring large blocks of CVs. The proposed method uses an indexed approach where one CV is used as a data register and 1 (or 2) CVs are used as logical address ‘pointers’ into a large block of decoder memory. This memory is not accessible through normal CV addressing techniques. These large data storage areas are named storage block B0, Storage block B1, etc. Blocks B0 and B1 can provide storage for up to 256 bytes each and blocks B2 and B3 are each capable of storing up to 65536 (64K) bytes of data each. A decoder does not need to provide the full amount of memory within each block nor does it need to support the Address Pointer Configuration CV (CVn). If the full amount of memory is not provided in a block the memory must begin addressing at location 0. The data stored in these storage blocks is manufacturer unique and no specific formatting is assumed. If the Address Pointer Configuration CV is not supported it is assumed that the pointer is nonvolatile.

2.	Description of Storage Block CVs

2.1.	Storage block B0. Storage for up to 256 bytes of data

CVn+1	 	Address pointer B0. Values written to the CV will provide a logical

		address into the 256 byte storage block B0. The first address in this

	block is 0.

CVn+2		Data register B0. Data is written or read through this CV to the logical

			address (0-255) in block B0.

2.2	Storage block B1. Storage for up to 256 bytes of data

CVn+3	 	Address pointer B1. Values written to the CV will provide a logical

	address into the 256 byte storage block B1. The first address in this

	block is 0.

CVn+4		Data register B1. Data is written or read through this CV to the logical

		address (0-255) in block B1.

2.3	Storage block B2. Storage for up to 65536 bytes of data

CVn+5/CVn+6 	Address pointer B2. These CVs act as a paired CV similar in operation

 	to CV17/CV18. CVn+5 is the high (most significant) byte and CVn+6

	is the low (least significant) byte. The first address in the block is 0000.

CVn+7		Data register B2. Data is written or read through this CV to the logical

		address (0-65535) in block B2.

2.4	Storage block B3. Storage for up to 65536 bytes of data

CVn+8/CVn+9 	Address pointer B3. These CVs act as a paired CV similar in operation

	to CV17/CV18. CVn+8 is the high (most significant) byte and CVn+9

	is the low (least significant) byte. The first address in the block is 0000.

CVn+10		Data register B3. Data is written or read through this CV to the logical

		address (0-65535) in block B3.

�
2.5	Address pointer configuration CV

CVn	Bit fields within this CV govern the action of Address pointers B0-B3.

	This CV is nonvolatile and will remember its value until rewritten.

	bit 0 - Address pointer B0 configuration

			0 - Pointer B0 is nonvolatile and will retain its value until rewritten.

			1 - Pointer B0 is volatile(not stored between power up sequences) and

			will increment its value upon each access of Data register B0.

	bit 1 - Address pointer B1 configuration

			0 - Pointer B1 is non-volatile and will retain its value until rewritten.

			1 - Pointer B1 is volatile(not stored between power up sequences) and

			will increment its value upon each access of Data register B1.

	bit 2 - Address pointer B2 configuration

			0 - Pointer B2 is non-volatile and will retain its value until rewritten.

			1 - Pointer B2 is volatile(not stored between power up sequences) and

			will increment its value upon each access of Data register B2.

	bit 3 - Address pointer B3 configuration

			0 - Pointer B3 is non-volatile and will retain its value until rewritten.

			1 - Pointer B3 is volatile(not stored between power up sequences) and

			will increment its value upon each access of Data register B3.

	bit 4-	reserved

	bit 5-	reserved

	bit 6-	reserved

	bit 7-	reserved

Page �page * MERGEFORMAT�2�

Proposal for storage of large amounts of data in decoders using indexed addressing

Last revision:�date \@ "d MMMM, yyyy" * MERGEFORMAT�6 September, 2001�

