DC on DCC (Zero Bit Stretching) is Not Supported by NCE

 Caution: Because the power is actually closer to AC, many DC motors heat up much more quickly than they ordinarily would on an analog power source, and some motor types can be seriously damaged with only a brief encounter with DCC track. Many motors will buzz and hum when presented with this type of power. Do not leave locomotives that are not equipped with a decoder on the track if possible, to reduce the chance of heat damage to the motor. See note below about core less motors.

The DCC AC signal or waveform is modified such that to the motor is starts to look like DC. The modification of the DCC AC waveform can accomplish both speed and directional control of the DC motor and is covered by the NMRA DCC Standards and RP's.

Also known as Zero Bit Stretching in the Digital Command Control specifications. May be informally referred to as Address 00.

In a segment of DCC-powered track, it may be possible to power a single analog (non-decoder equipped) model locomotive by itself or in addition to DCC equipped locomotives through a method known as Zero Stretching. Refer to the documentation for the the DCC system in use, as it is an optional feature.

Zero Stretching is not part of the DCC specification. Not all manufacturers support this feature.

Zero Bit Stretching

In this scheme, zero bits on the track can be extended to create a net effect where current appears to the motor to be flowing in one direction or another. The positive portion of the pulse can be made quite different than the negative portion of the zero bit. By making the waveform "more" positive or negative, direction can be established. In operation, the booster applies a pulse to rail A while holding rail B at ground potential, then grounding rail A and switching on rail B for a equal amount of time. This process repeats to create the DCC waveform seen on an oscilloscope.

The DCC waveform has a DC value of zero, so when zero stretching or analog mode is not in use, a non-decoder equipped locomotive will not move. The DCC waveform is symmetrical. To make zero stretching work, the command station will make the pulses on one rail longer than those applied to the other rail, causing the motor to turn. A normal DCC signal has symmetrical pulses of equal duration (period), causing the motor armature to rapidly oscillate, with little torque produced. The altered duration of the pulse applied to rail A or B causes the armature to turn further in one direction than the other, producing the torque needed for move the locomotive.

DCC Waveform, illustrating zero bit stretching.

Note: All direct current locomotives will respond to the signals created by Zero Stretching. Which may have unintended results.

As locomotive speed increases, more bandwidth will be demanded of address 00, which can have an impact on response times when more than 5 DCC equipped locomotives are also in operation. This technique is a bandwidth hog due to the need to constantly send packets addressed to 00.

  • Coreless motors and other low inductance types of motors should not be used on a DCC powered track (unless a DCC decoder is installed). Normally, current flow is limited by the back EMF that a motor generates when it is spinning, but the DCC waveform is full voltage all the time, even when address 00's throttle is closed, the zero stretching is at a minimum, and the motor is stopped. The waveform is not high enough frequency for the low inductance to limit the current flow when there is no back EMF, so the windings look like a short. They lack the iron core to sink the heat generated by excessive current flow, which will kill them very quickly. Core less motors are very expensive.
Was this article helpful?
2 out of 2 found this helpful
Have more questions? Submit a request